Elliptic Function Solutions of (2+1)-dimensional Long Wave – Short Wave Resonance Interaction Equation via a sinh-Gordon Expansion Method
نویسنده
چکیده
With the aid of symbolic computation, the sinh-Gordon equation expansion method is extended to seek Jacobi elliptic function solutions of (2+1)-dimensional long wave-short wave resonance interaction equation, which describe the long and short waves propagation at an angle to each other in a two-layer fluid. As a result, new Jacobi elliptic function solutions are obtained. When the modulus m of Jacobi elliptic functions approaches 1, we also deduce the singular oliton solutions; while when the modulus m → 0, we get the trigonometric function solutions. — PACS: 02.30.Jr, 03.40.Kf
منابع مشابه
Elliptic Function Solutions of (2+1)-Dimensional Breaking Soliton Equation by Sinh-Cosh Method and Sinh-Gordon Expansion Method
In this paper, based on sinh-cosh method and sinh-Gordon expansion method,families of solutions of (2+1)-dimensional breaking soliton equation are obtained.These solutions include Jacobi elliptic function solution, soliton solution,trigonometric function solution.
متن کاملNew study to construct new solitary wave solutions for generalized sinh- Gordon equation
In this work, we successfully construct the new exact traveling wave solutions of the generalized Sinh–Gordon equation by new application of the homogeneous balance method. The idea introduced in this paper can be applied to other nonlinear evolution equations.
متن کاملNew exact double periodic wave and complex wave solutions for a generalized sinh-Gordon equation
In this paper, dependent and independent variable transformations are introduced to solve a generalized sinh–Gordon equation by using the binary F-expansion method and the knowledge of elliptic equation and Jacobian elliptic functions. Many different new exact solutions such as double periodic wave and complex wave solutions are obtained. Some previous results are extended. 2013 Elsevier Inc. A...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملExact traveling wave solutions of some nonlinear evolution equations
Using a traveling wave reduction technique, we have shown that Maccari equation, (2?1)-dimensional nonlinear Schrödinger equation, medium equal width equation, (3?1)-dimensional modified KdV–Zakharov– Kuznetsev equation, (2?1)-dimensional long wave-short wave resonance interaction equation, perturbed nonlinear Schrödinger equation can be reduced to the same family of auxiliary elliptic-like equ...
متن کامل